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DETERMINATION OF CERTAIN PHYSICAL
PROPERTIES OF A SOLID ON THE BASIS
OF THE INTERATOMIC INTERACTION
POTENTIAL

N. I. Nikitenko UDC 539.2

The method of computing the dependence of the specific volume of a solid on the pressure and
temperature on the basis of the interatomic interaction potential, which is a function of the in-
ternal atom energy, is considered. The results obtained are compared with experimental data.

The interaction potential of atoms of a condensed body, which is a function of the atom internal energy,
is obtained in [1, 2]. In conformity with this potential, the force f with which a given atom acts on another
atom at a remote distance r can be represented as follows

[ = al(ho/ry*+2 — (hoyr)B+2] - DE (ho/r)V+2. (1)

Here h, is the spacing between two isolated atoms in the equilibrium state (f = 0) at an absolute zero tem-
perature (E=0), anda, 8,7, % b are positive constants. ’
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The potential mentioned follows from the linear dependence between the mean atom energy E of a con-
densed body measured from the zero level in a coupled coordinate system, and the energy g emitted by the
atom per unit time: :

q:'SE. (2)

The equation of state of condensed bodies is obtained [1] on the basis of (1), from which the Hooke's, Grun-
eisen, and linear expansion laws under heating follow. Relationship (2) permits obtaining a heat-conduction
integrodifferential equation {2, 3], from which the Fourier heat-conduction equation and a hyperbolic equation
used to describe highly intense heat-transportprocesses [4] follow, in the limit, for an increase in the atom
density and the thermal carrier velocities.

It can be shown that dependence (2) is a corollary of the spectral law of atom radiation according to
which atoms at the i-th energy level in the frequency v in the coupled coordinate system, radiate the energy
quantas hv per unit time [2, 3] '

Jiv = a'v}vivihv' (3)

where Nj is the number of particles at the i-th energy level, and €, # €,(i). Let us note that relationship (3)
permits obtaining the Planck formula for the emissivity of a blackbody and the fundamental statistical distri-
bution laws [2, 3].

In statistical thermodynamics a quantum oscillator whose energy, measured from the zero level, can
take on the values Ej, = iw,i=0, 1,..., is set in correspondence to each of the three degrees of freedom of
the atom, where the mean oscillator energy is

E, = hv/[exp (hv/kt) — 1]. ‘ (4)
In conformity with (3), the radiation energy per unit oscillator with frequency v is
gy = Sva' (5)

The exact frequency distribution of the atom vibrations of a solid is not known [5]. Following Debye, we
assume that the oscillations with frequency less than vp are distributed by a formula known from classical
physics, according to which the possible number of electromagnetic waves per unit volume with frequencies in
the range from v to v + dv is 8mv2dv/c3, where c is the velocity of light. Oscillations with frequencies greater
than v do not exist. The frequency vp is selected so that the total number of oscillations would equal the
number of degrees of freedom of the atoms per unit volume, i.e., thrice the density of the atoms:

vD
2
3,1:5 8Bavidv 81 ., (6)
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Taking (4) into account, the specific internal energy U is determined by the integral

vp avplkt . 8/T 34
3 4 3
U= 5‘ E, 8nvidv 8kt 5’ xdx 9 kit X3dx

T o e—1 0 Je—1 ™
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The expression obtained, in which © = hvp/kt (the Debye temperature) and x = hv/kt are used, agrees with the
Debye formula [5].

The radiation energy of n atoms is

2,
Q j‘ 83’{'\7 d’V EU, (8)
where the mean coefficient of radiation is

' e, x3dx / j‘ x3dx
g =

L ef—1

—1

Dividing (8) by n, we arrive at (2). For t > @, the expression q = &4t, &4 ~# const, follows from (2), which was
found in studying the heat-conduction mechanism [6]. Relationship (2) is valid for atoms within a solid which
release practically all the energy being absorbed because of radiation, The atoms located on the body bound-



ary possess a substantially greater freedom of motion, and in some respects their state approaches the state
of the gas. A significant part of the energy they absorbed goes over into kinetic energy and is transferred to
adjacent atoms because of collisions.

To set up a relationship between the atom interaction force f and the thermodynamic parameters we
use the following model. The solid is a right circular cylinder which is placed in a yoke preventing the possi-
bility of movement of the body atoms in a radial direction. As the normal stress ¢ changes on the cylinder
endfaces, or as its temperature changes, the atoms move along the cylinder axis z. The atoms with density
n, move uniformly on the planes z;(j =0, 1,...) parallel to the endface surface of the cylinder z =z,=0,
whose area is sufficiently large.

Let us find the interaction force Rgj of an atom in the plane zg With all the atoms in the layer zj. The
resultant interaction force dRgj between an atom with the coordinates z =zg, y =0,y 1 z, and the atoms in
the area element 2rydy in the z; plane is

VT

dR,; = 2aiydyn, y g5 =2 — 2

Va7
Integrating dRgj over the whole z; plane, we obtain
) 1/ hy Y* 1 [ hy \B] . bE [ hy \7| 2y
R,:de-:ZnnhZ{a[ ( ")—— ( ? )]—{— ( 0 )} 8 b= 24 = |27 — 2.l 9
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For convenience in the calculations it is expedient to represent (9) in the form
ﬁ .
Ry:A[(_"i_)‘i_( by ) ] BE( by )v,} | (10)
CgJ' ggi CgJ

h,:ho<~-ﬁ+1 )“—ﬁ A = 2nnghla —— 1 (a-{-
a1 a+1\p+1

B—2:rm,,h?b ( a1 )a:'—ﬁ
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Besides the interatomic interaction forces, surface & and mass F forces can act on the body particles
in the z axis direction. If a stress o acts on the cylinder endface, then the mean value of the surface force
&, per unit atom of the outer layer z =z, =0 is &, = o/n, The equilibrium equation for an arbitrary body
particle projected on the z axis can be written as follows:

where

Y Ry 4+ @y + Fy =0, (11
i

‘where

o
— for g=0,
@, =1 n,

0 for g==0.

For simplicity we henceforth neglect the mass force Fg.

The summation in (11) should be over all possible values j. However, function Rgj should diminish
rapidly as § gj Erows, hence, the spacing Hj = zj+,~ z4 between adjacent atoms is practically independent of
j for sufficiently large zj (when j = J)

Hj = H; = const for j>=d. (12)
Condition (12) is confirmed both by the results of computations for different values of J (30 < J < 150)

and by the known experimental fact about the independence of the macroscopm body density from their size
for invariant external pressure and temperature.

By virtue of (12), it is sufficient to retain terms for which CgJ JHj in (11) for the g-th layer when
calculating the sum Z:jo Solution of system (11), (12) permits determmatlon of Hgr & = 0,1,...,d, and

252



\.
\\

12
12 3
! y

8
b 6
7

g6

g 4 8 17 J

Fig. 1. Dependence of the relative
spacing Hj between iron atom
layers on the ordinal number of
the layer j along the z axis for
different stresses ¢ and tem-
peratures t: 1) t=0, 0 =0.05-
10! N/m?; 2) 873°K and 0; 3)

573 and 0; 4) 0 and 0; 5) 0 and
—0.5°10; 6) 0 and —1,5+10; 7)
~0 and —3- 10!,

g—1

2y = ij, if the A, B, hy, @, B, 7, ®g, and Fg are known.,

=0

The method of successive approximations, which can be used to determine the macroproperties of bod-
ies on the basis of an interatomic interaction potential of any kind, is proposed for the solution of the system
of nonlinear equations (11) and (12). The method consists of the successive determination of Y for g = 0,
1,...,dJ in the approximations m = 2, 3,.... The first approximation HL for spacings between atom layers
along the z axis can be selected arbitrarily. The determination of H' In the approximation m on the basis
of the value H" ! is the m-th major cycle of iteration. Each major cycle of iteration consists of J + 1 minor
cycles of iteration, This latter is related to determination of the spacing Hén, g=0,1,...,d, on the basis of
(11) written for the layer g.

All the spacings except H, in the minor iteration cycle are considered invariant: H: = H® for j =0,
L,...,g— laurlde:HJm"1 for j=g+ 1, g+ 2,...,J. In a first approximation, the spacing Hé‘}l) is assumed

to equal Hrél- L To determine ng( ) in the approximation s, the value wg(g-y in the left side of [11] is cal~

culated for Hén = s-1- The deviation of the value wg(g-y from zero is used as the mismatch signal be-
tween Hg(g-y and ‘§1e desired value of the spacing in this cycle Hg which assures satisfaction of [11]. The
spacing Hg(g) is determined from the relationship
; (s-1)
Hgy = Hgoyy + Vﬁis o (13)
g(s—1)

The rate of change Vg of the function Wg in Hg is determined by the difference relationship

m T
Z’(s) — ’ Hg(s)_Hg(s—l) ! s 22,
m me-1 Wets) — We(s-1) |
where Vg(g) = Vg(s-p for s = 1.
The process of evaluating H;;n ceases and it becomes
m H"; —-'Hm(s—l) l 14
Hg =ng5) for —-—g—i‘ﬁﬁ—g———— <6, ( )

£(s)
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Fig. 2. Change in the relative volume v/v, of an iron
cylinder in a rigid yoke due to the pressure p, N/m
(a) and due to the temperature t, °K (b).

where 0 is a certain small positive number., The number M of major iteration cycles is determined by a
condition which is analogous to (14):
(=22

M
Z5

<8

Results of solving system (11)-(12) for iron are represented in Figs. 1 and 2 for different values of the
stress o and the temperature t, °K. The following values are taken for the parameters characterizing iron
atom interaction: A=1.604-10"10 N; B =0.3146-10° ¥/m; @ = 4.1; § = 1.01; ¥ = 0.92; h; = 4.51-10~1, Let us
note that the dimensionless magnitude of the spacing Hj /hj was determined during the calculation. The nu-
merical value of hy is obtained by starting from the fact that the mean spacing Hg between adjacent iron atom
layers is

HY = 3=}/ plp,N - 10° = 2.27.10-0 m

for a pressure p = 0 and temperature t = 0, where 4 = 55,85 is the atomic weight of iron, N is Avogadro's
number, N = 6,0228 - 10"23, pq is the density of iron at p= 0 and t = 0. In conformity with tabulated data, the
Debye temperature © is taken equal to 453 °K.,

Values of the exponents [1, 2] a, 8, and y are determined on the basis of the equation of state of condensed
bodies because of comparing theoretical and experimental values of the parameters on the boundary curve for
twelve different fluids (including water, mercury, ammonia, and sodium). The exponent & for these fluids varies
within the limits 3 < @ < 6, while the quantity 8 is almost one, and the difference 8 —vy turns out to be prac-
tically constant and equal to 0.09 [1]. Although the values of @, 8 and y for solid iron are obtained by a differ-
ent means, they are nevertheless in conformity with their values for fluids,

It is seen from Fig. 1 that the relative magnitude of the spacing ﬁj = HJ-/ H? along the z axis stabilizes
sufficiently rapidly for different stresses and temperatures, and remains practically constant for J > 15.

The solution of system (11)-(12) permits the determination of a dependence between the stress ¢ on the
cylinder endface and its relative volume v/v, where v is the specific volume of iron and v, is the specific
volume of iron at ¢ = 0 and t = 0. Experimental data [6] available in the literature set up a relationship be-
tween the uniform external pressure p and the relative volume v/v; To compare the computed and experi-
mental data we use the relationship, known from elasticity theory, between the quantities ¢ and p (to which

identical changes in the specific volume correspond)
g = P'3 1 — v ,
14+

where the Poisson's ratio ¢ is a function of temperature.

Results of computing the relative volume v/v, of the iron cylinder under consideration are represented
by solid lines in Figs. 2a and b as a function of the pressure p and temperature t, respectively. The points
are the superposed experimental results: obtained in [7] in Fig. 2a, and presented in tables which character-
ize the dependence of the density ofthe free ironbody p onthe temperature in Fig. 2b. Here we use the relationship
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which governs the relation between the relative volume v/v, of the cylinder in a rigid yoke, on the one hand,
and the relative density p/p, (0, = 1/v,) of the free body from the same material, on the other, for a given
temperature t when there are no external forces (p = 0,0 = 0).

It follows from Fig. 2 that the computed and experimental results are in good agreement. These data
can be used to determine the dependence of the elastic moduli, the coefficient of thermal expansion, and some
other physical characteristics as a function of the pressure and temperature.
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ANALYSIS OF THERMAL MODEL OF THE CONTACT

HEAT TRANSFER OF ROUGH SURFACES
G. N. Dul'nev, Yu. P. Zarichnyak, UDC 62-182.8.017.7
Yu. V. Kuznetsov, and B, V. Pol'shchikov

A thermal model of the contact heat transfer between rough surfaces is considered, taking into
account curvature of the current lines in the gaps. Theoretical relations determining the con-
tact thermal resistance at small pressures are obtained,

Formulation of the Problem

One of the parameters which has a significant effect on the thermal conditions in apparatus is the con-
tact thermal resistance (CTR) due to imperfections of the mechanical connection between the contacting sur-
faces.

In [1-4] a detailed analysis was made of the results of investigations of CTR by Soviet and non-Soviet
authors, the mechanism of contact was explained, the physical basis of the heat transfer through the contact
zone was discovered, and practical recommendations for the intensification of heat transfer were given, How-
ever, as the forms of real mechanical connections are so different and so complex, it is often a laborious task
to use the results of [1-4] for the calculation of CTR. There are several reasons for this:

a) the theoretical relations are only adequately reliable for the simplest case of contacting-object ge-
ometry =~ tangency of plane surfaces;
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